Materials Modelling


The way a scientist looks at the materials world is changing dramatically. Advances in the synthesis of nanostructures and in high-resolution microscopy are allowing us to create and probe assemblies of atoms and molecules at a level that was unimagined only a short time ago – the prospect of manipulating materials for device applications, one atom at a time, is no longer a fantasy. Being able to see and touch the materials up close means that we are more interested than ever in understanding their properties and behavior at the atomic level. Another factor which contributes to the present state of affairs is the advent of large-scale computation, once a rare and highly sophisticated resource accessible only to a few privileged scientists. In the past few years materials modeling, in the broad sense of theory and simulation in integration with experiments, has emerged as a field of research with unique capabilities, most notably the ability to analyze and predict a very wide range of physical structures and phenomena. Some would now say the modeling approach is becoming an equal partner to theory and experiment, the traditional methods of scientific inquiry.
There are certain problems in the fundamental description of matter, previously regarded as intractable, now are amenable to simulation and analysis. The ab initio calculation of solid-state properties using electronic-structure methods and the direct estimation of free energies based on statistical mechanical formulations are just two examples where predictions are being made without input from experiments. Because materials modeling draws from all the disciplines in science and engineering, it greatly benefits from cross fertilization within a multidisciplinary community. There is recognition that Computational Materials is just as much a field as Computational Physics or Chemistry; it offers a robust framework for focused scientific studies and exchanges, from the introduction of new university curricula to the formation of centers for collaborative research among academia, corporate and government laboratories. A basic appeal to all members of the growing community is the challenge and opportunity of solving problems that are fundamental in nature and yet have great technological impact, problems spanning the disciplines of physics, chemistry, engineering and biology.

Multiscale modeling has come to symbolize the emerging field of computational materials research. The idea is to link simulation models and techniques across themicro-to-macro length and time scales,with the goal of analyzing and eventually controlling the outcome of critical materials processes. Invariably these are highly nonlinear, inhomogeneous, or non-equilibrium phenomena in nature. In this paradigm, electronic structure would be treated by quantum mechanical calculations, atomistic processes by molecular dynamics or Monte Carlo simulations, mesoscale microstructure evolution by methods such as finite-element, dislocation dynamics, or kinetic Monte Carlo, and continuum behavior by field equations central to continuum elasticity and computational fluid dynamics. The vision of multiscale modeling is that by combining these different methods, one can deal with complex problems in a much more comprehensive manner than when the methods are used individually

“Modeling is the physicalization of a concept, simulation is its computational realization.”

This is an oversimplified statement. On the other hand, it is a way to articulate the intellectual character of the present volume. This Handbook is certainly about modeling and simulation. Many would agree that conceptually the process of modeling ought to be distinguished from the act of simulation. Yet there seems to be no consensus on how the two terms should be used to show that each plays an essential role in computational research. Here we suggest a brief all-purpose definition (admittedly lacking specificity). By concept we have in mind an idea, an idealization, or a picture of a system (a scenario of a process) which has the connotation of functionality. For an example consider the subway map of Boston. Although it gives no information about the city streets, its purpose is to display the connectivity of the stations – few would dispute that for the given purpose it is a superb physical construct enabling any person to navigate from point A to point B [2]. So it is with our twopart definition; it is first a thoughtfully simplified representation of an object to be studied, a phenomenon, or a process (modeling), then it is the means with which to investigate the model (simulation). Notice also that when used together modeling and simulation implies an element of coordination between what is to be studied and how the study is to be conducted.

Source :